SPRING 2025 MATH 540: QUIZ 8 SOLUTIONS

Name:

1. Find all odd primes primes $p \leq 37$ such that 5 is a square mod p. (3 points)

Solution. We first note that the only squares mod 5 are 1 and 4. Second, for any odd prime $p \leq 37$, we have $\left(\frac{5}{p}\right) = (-1)^{\frac{5-1}{2}\frac{p-1}{2}}\left(\frac{p}{5}\right) = \left(\frac{p}{5}\right)$.

Thus, $\left(\frac{3}{5}\right) = -1; \left(\frac{5}{5}\right) = 0; \left(\frac{7}{5}\right) = \left(\frac{2}{5}\right) = -1; \left(\frac{11}{5}\right) = \left(\frac{1}{5}\right) = 1; \left(\frac{13}{5}\right) = \left(\frac{3}{5}\right) = -1; \left(\frac{17}{5}\right) = \left(\frac{2}{5}\right) = -1; \left(\frac{19}{5}\right) = \left(\frac{4}{5}\right) = 1; \left(\frac{31}{5}\right) = \left(\frac{3}{5}\right) = 1; \left(\frac{37}{5}\right) = \left(\frac{2}{5}\right) = -1; \left(\frac{19}{5}\right) = \left(\frac{4}{5}\right) = 1; \left(\frac{31}{5}\right) = \left(\frac{1}{5}\right) = 1; \left(\frac{37}{5}\right) = \left(\frac{2}{5}\right) = -1.$ Thus, 5 is a square mod: 11, 19, 29, 31.

2. Give an example to show that $(\frac{a}{n}) = 1$ need not imply that a is a quadratic residue mod n. Here $(\frac{a}{n})$ denotes the Jacobi symbol, $(\frac{a}{n}) := (\frac{a}{p_1})^{e_1} \cdots (\frac{a}{p_r})^{e_r}$, for $n = p_1^{e_1} \cdots p_r^{e_r}$. Be sure to provide all details. (3 points)

Solution. $(\frac{2}{15}) = (\frac{2}{3}) \cdot (\frac{2}{5}) = (-1) \cdot (-1) = 1$, but 2 is not a square mod 15. One can either verify this directly or use the fact that under the multiplicative map $\mathbb{Z}_{15} \to \mathbb{Z}_3 \times \mathbb{Z}_5$ given by $\tilde{a} \to (\bar{a}, \hat{a})$, 2 is neither a square in \mathbb{Z}_3 nor \mathbb{Z}_5 , so 2 is not a square mod 15.

3. Assuming gcd(a, n) = 1 = gcd(b, n), prove the following properties of the Jacobi symbol: (i) $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \cdot \left(\frac{b}{n}\right)$ and (ii) If $a \equiv b \mod n$, then $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$. (4 points)

Solution. For (i), we use the property $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, for the Legendre symbol $\left(\frac{c}{p}\right)$, when p is prime. We have

$$\begin{aligned} (\frac{ab}{n}) &= (\frac{ab}{p_1})^{e_1} \cdots (\frac{ab}{p_r})^{e_r} \\ &= \{(\frac{a}{p_1})(\frac{b}{p_1})\}^{e_1} \cdots \{(\frac{a}{p_r})(\frac{b}{p_r})\}^{e_r} \\ &= \{(\frac{a}{p_1})^{e_1}(\frac{b}{p_1})^{e_1}\} \cdots \{(\frac{a}{p_r})^{e_r}(\frac{b}{p_r})^{e_r}\} \\ &= \{(\frac{a}{p_1})^{e_1} \cdots (\frac{a}{p_r})^{e_r}\} \cdots \{(\frac{b}{p_1})^{e_1} \cdots (\frac{b}{p})^{e_r}\} \\ &= (\frac{a}{p_1})(\frac{b}{p_1}). \end{aligned}$$

For (ii), we note that if $a \equiv b \mod n$, then b = a + tn, for some $t \in \mathbb{Z}$. Note that this shows $b \equiv a \mod p_i$, for each prime factor p_i of n. Thus, $\left(\frac{b}{n}\right) = \left(\frac{b}{p_i}\right)^{e_1} \cdots \left(\frac{b}{p_r}\right)^{e_r} = \left(\frac{a}{p_i}\right)^{e_1} \cdots \left(\frac{a}{p_r}\right)^{e_r} = \left(\frac{a}{n}\right)$.